Innovative traction energy accounting at MÁV

Budapest, 18th October, 2017

2910 km

Electrified railway line 40% of the total network lenght

Electric locomotive 45 RUs operate in 2017

849 GWh

Energy consumption Value:70 million EUR/year

Energy accounting possibilities

Estimation

Locomotive type parameter (L)

Train type (T)

Grosstonnekm (G)

Seasonal Coefficient values (C)

 $E_{nergy} = G^*C(L,T)$

Y2006 –

Measuring

Received data

Only for locos with foreign meters

Based on the other IM's data service

No-Bo certificate must be given

Y2016-

Own data

For all locos with national meters

Based on the MÁV's data collection

No-Bo certificate must be given

Y2019 -

What necessary?

RUs

"Would like" to measure!

No-Bo certificate about its measuring system

and...

Sit tight and relax ©

MÁV

IM-IM cooperation (ÖBB-MÁV)

Certificate checking with KTI as a Hungarian No-Bo

Setting up the locomotive into the IT system

Accounting process based on measured data

Lead time months

Registering the Energy

Integrated
MEasuring
System

Collect the train run data

Calculate the energy **consumption for every train** which runs with electric engine

If measured data exists, **overwrite** the calculated values with it.

How does the measuring work? Connect data to trainpath 3. UTIL-TS Data exchange Identification Validation Location, time, consumption Unproductive energy **Network loss** 5. Energy tax Invoicing

Type of the Energy

We identify 3 main types of measured consumption

In accordance with: Commission Regulation (EU) No 1301/2014 and 1302/2014, and UIC 930.

Statistics of measuring - 2016

Raillway Undertakings

GYSEVCARGO

₩AU-START

total consumption

Data analysis - 2016

Monthly balance between two accounting methods

Unproductive energy analysis - 2016

06/2016

05/2016

07/2016

01/2016

02/2016

03/2016

04/2016

08/2016

09/2016

10/2016

11/2016

Data sharing – Energy study and certificate – 2016

SALES DEPARTMENT

Energy efficiency study of consumed traction electricity on MÁV's network - 2016

Modern locomotives

Measured energy

Unproductive energy

Consumed green energy

Goals for the future

Developing

the energy accounting system

Until 2019

Extension

the measurment based accounting

For all RUs

Deep analysing

with detailed data and self service BI tool

Used external factor information:

- Speed limit
- Traffic control
- Weather and terrain conditions

Sharing

information with RUs

Continous and direct information from the system Encourage to save energy

For the energy efficient rail transport

